代数求导
结论 Link to heading
y对w的转置进行求导等于y对w求导后的转置 Link to heading
若 y 是标量, w 是向量或矩阵, 且采用分母布局, 则有
$$ \frac{\partial y}{\partial w^T} = \left( \frac{\partial y}{\partial w} \right)^T $$示例
设 $w = [w_1, w_2]^T$, 则有:
$$ \frac{\partial y}{\partial w^T} = \left[ \frac{\partial y}{\partial w_1}, \frac{\partial y}{\partial w_2} \right] = \begin{bmatrix} \frac{\partial y}{\partial w_1} \\ \frac{\partial y}{\partial w_2} \end{bmatrix}^T = \left( \frac{\partial y}{\partial w} \right)^T $$